Abstract
We explore the influence of the deformation on the nuclear matrix elements of the neutrinoless double beta decay (NME), concluding that the difference in deformation -or more generally in the amount of quadrupole correlations- between parent and grand daughter nuclei quenches strongly the decay. We correlate these differences with the seniority structure of the nuclear wave functions. In this context, we examine the present discrepancies between the NME's obtained in the framework of the Interacting Shell Model and the Quasiparticle RPA. In our view, part of the discrepancy can be due to the limitations of the spherical QRPA in treating nuclei which have strong quadrupole correlations. We surmise that the NME's in a basis of generalized seniority are approximately model independent, i. e. they are "universal".
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.