Abstract

We present a novel nonlinear predictive image coding scheme in which a relative prediction error is first generated from the current pixel value and its predicted value. It is next mapped, quantized, coded and transmitted. Consequently, a weighting function is introduced into the coding algorithm such that the coding error is adapted by the pixel intensity and its relative prediction error. Meanwhile, the resulting quantization step size is smaller in lower contrast areas and larger in higher contrast areas so that the granular noise and the slope overload distortion can be efficiently reduced. Our simulation results show that on an average, with the proposed scheme, the bit rate is about 0.23 bits less than that obtained with differential pulse-code modulation (DPCM), while the peak SNR (PSNR) is about 2.9 dB higher than that with DPCM. On the other hand, more coding errors are allocated in less visible areas where the image intensity and/or contrast are higher.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.