Abstract

This study presents the bifurcation analysis and stabilization via the impulsive control of a fractional-order gene regulatory network with time delay. First, the author chooses the transcription rate k as the bifurcation parameter and obtains the Hopf bifurcation condition by analyzing its characteristic equation. The research shows that Hopf bifurcation occurs when the transcription rate k exceeds a critical value. This bifurcation behavior may destabilize the system. Subsequently, the author designs an impulsive controller to stabilize the system. Finally, simulation examples are used to verify our theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.