Abstract
The non-thermoluminescence afterglow-based dosimetry performance of self-agglomerating pellet-shaped CaSO4:Dy phosphors synthesized through a low-cost, environmentally friendly method is first reported. Thermoluminescence (TL) and afterglow (AG) were analyzed in samples exposed to beta particle irradiation in the dose range from 0.06 to 8.0 Gy. Characteristic TL glow curves consist of an intense TL maximum at 134 °C, a shoulder at 200 °C, and a maximum at 447 °C. CaSO4:Dy exhibits a highly sensitive AG response for 24 hours with linear behavior from 0.06 Gy to 8.0 Gy. A remarkable reproducibility of both the TL and the AG response was observed in repeated irradiation–readout cycles with no need for pre-irradiation annealing. The synthesized CaSO4:Dy exhibits promising properties to be used as an AG-based dosimeter for real-time radiation detection and dosimetry. Moreover, this phosphor might be applied as a long persistent phosphor (LPP), being a cost-effective alternative to other available LPPs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.