Abstract

This paper presents a novel Call Admission Control (CAC) scheme which adopts the neural network approach, namely Minimal Resource Allocation Network (MRAN) and its extended version EMRAN. Though the current focus is on the Call Admission Control (CAC) for Asynchronous Transfer Mode (ATM) networks, the scheme is applicable to most high-speed networks. As there is a need for accurate estimation of the required bandwidth for different services, the proposed scheme can offer a simple design procedure and provide a better control in fulfilling the Quality of Service (QoS) requirements. MRAN and EMRAN are on-line learning algorithms to facilitate efficient admission control in different traffic environments. Simulation results show that the proposed CAC schemes are more efficient than the two conventional CAC approaches, the Peak Bandwidth Allocation scheme and the Cell Loss Ratio (CLR) upperbound formula scheme. The prediction precision and computational time of MRAN and EMRAN algorithms are also investigated. Both MRAN and EMRAN algorithms yield similar performance results, but the EMRAN algorithm has less computational load.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.