Abstract

The coronavirus disease 2019 (COVID-19) pandemic has created challenges in maintaining the safety of prehospital providers caring for patients. Reports have shown increased rates of Emergency Medical Services (EMS) provider infection with COVID-19 after patient care exposure, especially while utilizing aerosol-generating procedures (AGPs). Given the increased risk and rising call volumes for AGP-necessitating complaints, development of novel devices for the protection of EMS clinicians is of great importance.Drawn from the concept of the powered air purifying respirator (PAPR), the AerosolVE helmet creates a personal negative pressure space to contain aerosolized infectious particles produced by patients, making the cabin of an EMS vehicle safer for providers. The helmet was developed initially for use in hospitals and could be of significant use in the prehospital setting. The objective of this study was to determine the efficacy and safety of the helmet in mitigating simulated infectious particle spread in varied EMS transport platforms during AGP utilization. Fifteen healthy volunteers were enrolled and distributed amongst three EMS vehicles: a ground ambulance, a medical helicopter, and a medical jet. Sodium chloride particles were used to simulate infectious particles, and particle counts were obtained in numerous locations close to the helmet and around the patient compartment. Counts near the helmet were compared to ambient air with and without use of AGPs (non-rebreather mask [NRB], continuous positive airway pressure mask [CPAP], and high-flow nasal cannula [HFNC]). Without the helmet fan on, the particle generator alone and with all AGPs produced particle counts inside the helmet significantly higher than ambient particle counts. With the fan on, there was no significant difference in particle counts around the helmet compared to baseline ambient particle counts. Particle counts at the filter exit averaged less than one despite markedly higher particle counts inside the helmet. Given the risk to EMS providers by communicable respiratory diseases, development of devices to improve safety while still enabling use of respiratory therapies is of paramount importance. The AerosolVE helmet demonstrated efficacy in creating a negative pressure environment and provided significant filtration of simulated respiratory droplets, thus making the confined space of transport vehicles potentially safer for EMS personnel.

Highlights

  • The coronavirus disease 2019 (COVID-19) pandemic has created challenges in maintaining the safety of Emergency Medical Services (EMS) providers while allowing the provision of maximally aggressive respiratory therapies for patient care

  • Given the risk to EMS providers by communicable respiratory diseases, development of devices to improve safety while still enabling use of respiratory therapies is of paramount importance

  • Many patients transported by EMS require respiratory therapies, including nebulized medications, continuous positive airway pressure (CPAP) non-invasive ventilation, or heated high-flow nasal cannula oxygen therapy (HHFNC)

Read more

Summary

Introduction

The coronavirus disease 2019 (COVID-19) pandemic has created challenges in maintaining the safety of Emergency Medical Services (EMS) providers while allowing the provision of maximally aggressive respiratory therapies for patient care. Many patients transported by EMS require respiratory therapies, including nebulized medications, continuous positive airway pressure (CPAP) non-invasive ventilation, or heated high-flow nasal cannula oxygen therapy (HHFNC). These treatments are considered aerosol-generating procedures (AGPs) and have the potential to increase spread of infectious viral agents, such as COVID-19.1,2 Use of such therapies places EMS providers at particular risk given the small physical confines of an ambulance or helicopter and lack of ventilation systems designed to mitigate aerosolization of infectious agents. The risk of COVID-19 infection and/or mandatory quarantine following a significant exposure can be mitigated by improving prehospital PPE

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call