Abstract
Fungal infections have become a serious medical problem due to the high infection rate and the frequent emergence of drug resistance. Squalene epoxidase (SE) and 14α-demethylase (CYP51) are considered as the important antifungal targets, they can show the synergistic effect on antifungal therapy. In the study, a series of active fragments were screened through the method of De Novo Link, and these active fragments with the higher Ludi_Scores were selected, which can show the obvious binding ability with the dual targets (SE, CYP51). Subsequently, three series of target compounds with naphthyl amide scaffolds were constructed by connecting these core fragments, and their structures were synthesized. Most of compounds showed the antifungal activity in the treatment of pathogenic fungi. It was worth noting that compounds 10b-5 and 17a-2 with the excellent broad-spectrum antifungal properties also exhibited the obvious antifungal effects against drug-resistant fungi. Preliminary mechanism study has proved these target compounds can block the biosynthesis of ergosterol by inhibiting the activity of dual targets (SE, CYP51). Furthermore, target compounds 10-5 and 17a-2 with low toxicity side effects also demonstrated the excellent pharmacological effects in vivo. The molecular docking and ADMET prediction were performed, which can guide the optimization of subsequent lead compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.