Abstract

Intracellular electrophysiological measurements form the foundation for understanding ion channel behavior, neural signaling and pharmaceutical activity. However, intra-cellular patch clamps lead to cell death in less than 2 hrs and are not amenable to fabrication into large arrays, significantly limiting their applicability. Extra-cellular electrodes traditionally have many electrodes in parallel, yet suffer from poor data quality and limited electrical stimulation. Here we report that metallic electrodes that mimic transmembrane protein hydrophobicity spontaneously fuse into cell membranes during cell culture, providing direct, robust electrical access into cells without damage. These ‘Stealth electrodes’ are fully functional intracellular patch-clamps, providing current-clamp, voltage-clamp, stimulation and recording capabilities for more than 3 days continuously on primary rat hippocampal neurons. These devices can be fabricated using standard semiconductor processing techniques.View Large Image | View Hi-Res Image | Download PowerPoint Slide

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.