Abstract

Compared with continuous wave lasers, ultrafast lasers have the advantages of ultra-short pulse width and ultra-high peak power, and have significant applications in optical communications, medical diagnostics, and precision machining. Saturable absorber (SA) technology is the most effective technique for the generation of ultra-fast lasers, which are based on artificial SAs and natural SAs. Among them, the semiconductor saturable absorber mirror has become the most commonly used form at present. Recently, basic research and application of nanomaterials such as carbon nanotubes (CNTs) and graphene have been developed rapidly. Researchers have found that nanomaterials exhibit extraordinary characteristics in ultrafast photonics, such as the low saturation intensity of CNTs, zero-band gap of graphene, and extremely high modulation depth of the topological insulator nano-films. Since graphene was first reported as an SA in 2009, many other nanomaterials have been successively explored, resulting in the rapid development of novel nanomaterial-based SAs. In this paper, we classified the nanomaterials used in SA mode-locking technology at 1.5 μm and reviewed their research progress with a particular focus on nonlinear optical properties, integration strategies, and applications in the field of ultrafast photonics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.