Abstract

We introduce a new nanoindentation method to continuously measure the hardness while sweeping through orders of magnitudes of strain rates within a single experiment. While nanoindentation already allows the determination of the strain rate sensitivity of materials by means of strain rate jump tests, these are typically limited to few discrete strain rates. With the new method, the strain rate sensitivity can be measured continuously as a function of the strain rate. Applications to fused silica, Zn-22 %Al superplastic alloy, single crystalline aluminum, various nanocrystalline metals and a palladium-based metallic glass are shown. Besides some discrepancy with the reference measurements, the new method seems only affected by the presence of a strong nanoindentation size effect. Provided this indentation size effect is not excessively large and can be corrected for accurately, the method proves robust, with no suggestion that the direction of the strain rate sweep affects the evaluation of the strain rate sensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.