Abstract

BackgroundEnterococcus faecalis (E. faecalis) is the most recovered species from the root canals after failed root canal treatment. Calcium phosphate bone cement (CPC) scaffold is promising for applications in endodontic treatment as a kind of root canal sealer. Graphene oxide (GO) has been extensively considered as a kind of promising nano-materials for antibacterial applications. In the present study, an injectable CPC-chitosan paste containing GO was developed for promising endodontic therapy. The antibacterial properties of this paste against E. faecalis biofilms as well as the support for human dental pulp stem cells (hDPSCs) were investigated.MethodsCPC-chitosan composite with or without GO injectable scaffold was fabricated. The hDPSC growth and viability on scaffolds were investigated by live/dead assay. Antibacterial effects against E. faecalis biofilms were determined in clinical detin block samples.ResultsThe antibacterial CPC-chitosan-GO disks had excellent hDPSC support with the percentages of live cells at around 90%. CPC-chitosan-GO also had greater antibacterial activity on E. faecalis than that of CPC-chitosan control using detin block models (p < 0.05).ConclusionsThe injectable CPC-chitosan-GO paste had strong effects on inhibition E. faecalis and hDPSC support, which could fill the void of adjusting paste to the defect and shaping in situ for promising endodontic therapy.

Highlights

  • Root canal therapy (RCT) is an essential step to remove infected tissue and pathogens such as Enterococcus faecalis (E. faecalis), one of the most recovered species from the root canals after failed root RCT [1]

  • The aims of this study were to investigate the antibacterial properties against E. faecalis biofilms as well as the support for human dental pulp stem cells (hDPSCs)

  • The diameters of inhibition zone were measured in the CPCchitosan and Calcium phosphate bone cement (CPC)-chitosan-Graphene oxide (GO) group, respectively

Read more

Summary

Introduction

Root canal therapy (RCT) is an essential step to remove infected tissue and pathogens such as Enterococcus faecalis (E. faecalis), one of the most recovered species from the root canals after failed root RCT [1]. Nanomaterials such as graphene oxide (GO) are considered as effective alternative antimicrobial agents for antibiotics and chemical agents [6]. Due to the unique properties including large surface planar structure, chemical and mechanical stability, and good biocompatibility, GO has been extensively considered as a kind of promising biomaterials for antibacterial ­applications. Enterococcus faecalis (E. faecalis) is the most recovered species from the root canals after failed root canal treatment. Calcium phosphate bone cement (CPC) scaffold is promising for applications in endodontic treatment as a kind of root canal sealer. Graphene oxide (GO) has been extensively considered as a kind of promising nano-materials for antibacterial applications. An injectable CPC-chitosan paste containing GO was developed for promising endodontic therapy. The antibacterial properties of this paste against E. faecalis biofilms as well as the support for human dental pulp stem cells (hDPSCs) were investigated

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.