Abstract

Polymer functionalized nanoparticles (NPs) have a great attention in biomedical applications owing to their unique properties like regenerative antioxidant, anti‐inflammatory, auto‐catalytic properties, and biocompatibility. In this current work, we demonstrated a facile synthesis of Se‐CeO2 via chemical method followed by precipitation method. The prepared Se NPs were characterized by ultraviolet–visible (UV‐vis) spectroscopy, and the size and morphology of the NPs were analysed using transmission electron microscopy (TEM). Meanwhile, Se‐CeO2 NPs loaded on polylactic‐co‐glycolic acid (PLGA) nanocarrier were characterised by Fourier transform infrared (FT‐IR), scanning electron microscopy (SEM), X‐ray photoelectron spectroscopy (XPS), TEM, and energy dispersive X‐ray analysis (EDAX) mapping techniques. The morphological and spectroscopic investigations of prepared nanomaterials have exhibited favourable morphological structure and chemical interactions with respective polymeric molecules, which established that nanovesicle suitability for the SCI functional recovery. We first investigated Se nanoformulated CeO2 material for the potential healing of in vitro spinal cord study. Our results demonstrated that preparation of NPs loaded PLGA nanocarrier has provide effective spinal cord regeneration and imply that it was explored that promising nanocarrier in the SCI treatment. Se‐NPs encapsulated CeO2 nanostructures administrations for SCI therapies have greatly suppressed oxidative stress and induced anti‐inflammatory action, which leads to prospective therapeutic benefits of spinal cord regeneration. These investigative results demonstrate that Se‐CeO2 NPs with PLGA carrier could have great attention for effecient functional recovery treatment and care for spinal cord injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.