Abstract
NaNbO3 (NN) is considered to be one of the most prospective lead-free antiferroelectric energy storage materials due to the merits of low cost, nontoxicity, and low density. Nevertheless, the electric field-induced ferroelectric phase remains dominant after the removal of the electric field, resulting in large residual polarization, which prevents NN ceramics from obtaining superior energy storage performance. In this work, the relaxor ferroelectric Sr0·7Bi0·2TiO3 (SBT) was chosen to partially replace the NN ceramics, and the introduction of the nanodomain of the relaxor ferroelectric hinders the generation of field-induced ferroelectric phases, allowing the material to combine the large polarization strength of the relaxor ferroelectric with the near-zero residual polarization of the antiferroelectric. Large recoverable energy storage density (4.5 J cm−3) and ultra-high energy storage efficiency (90.3%) were gained in NN-20SBT under an electric field of 288 kV cm−1. Furthermore, superior temperature (25–120 °C) and frequency (1–500 Hz) stabilities were acquired. These performances demonstrate that NN-20SBT ceramics are potential candidates as dielectric materials for high energy storage density pulsed power capacitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.