Abstract

The cation-exchange capacities for the alkaline earth metals Ba, Mg, and Ca, and their immobilization in the interlayers of a novel swelling fluorine mica (Na-3-mica) with a high-layer-charge density were studied. The mica was fully exchanged or saturated with Ba, Mg, and Ca ions and the cation-exchange capacities were determined to be 246, 338, and 322 meq (100 g)−1, respectively, on anhydrous basis of mica. The chemical analyses of the saturated micas indicated that about three exchangeable interlayer sodium ions per unit cell existed in the mica as a result of the total negative layer charge due to both Mg vacancies in octahedral sheets and Al substitution in tetrahedral Si sheets of the silicate. The Ba, Mg, and Ca leachabilities of the saturated micas were investigated in 0.5 M NaCl background solutions at room temperature and these were compared to the Sr leachability of the Sr-saturated mica. The degree of the cation immobilization in the interlayers increased in the order of Ca<Sr<Ba<Mg. This could be explained by the interlayer spacings and structures of the saturated micas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.