Abstract

Isolated cytochrome c oxidase (COX) deficiency is a common cause of mitochondrial disease, yet its genetic basis remains unresolved in many patients. Here, we identified novel compound heterozygous mutations in SCO1 (p.M294V, p.Val93*) in one such patient with fatal encephalopathy. The patient lacked the severe hepatopathy (p.P174L) or hypertrophic cardiomyopathy (p.G132S) observed in previously reported SCO1 cases, so we investigated whether allele-specific defects in SCO1 function might underlie the genotype-phenotype relationships. Fibroblasts expressing p.M294V had a relatively modest decrease in COX activity compared with those expressing p.P174L, whereas both SCO1 lines had marked copper deficiencies. Overexpression of known pathogenic variants in SCO1 fibroblasts showed that p.G132S exacerbated the COX deficiency, whereas COX activity was partially or fully restored by p.P174L and p.M294V, respectively. These data suggest that the clinical phenotypes in SCO1 patients might reflect the residual capacity of the pathogenic alleles to perform one or both functions of SCO1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.