Abstract

Once a fault in microgrids has been cleared, it is necessary to restore the unfaulted but out-of-service loads as much as possible in a timely manner. This paper proposes a novel fully distributed multiagent based load restoration algorithm. According to the algorithm, each agent makes synchronized load restoration decision according to discovered information. During the information discovery process, agents only communicate with their direct neighbors, and the global information is discovered based on the Average-Consensus Theorem. In this way, total net power, indexes and demands of loads that are ready for restoration can be obtained. Then the load restoration problem can be modeled and solved using existing algorithms for the 0–1 Knapsack problem. To achieve adaptivity and stability, a distributed algorithm for coefficient setting is proposed and compared against existing algorithms and a particle swarm optimization based algorithm. Theoretically, the proposed load restoration algorithm can be applied to systems of any size and structure. Simulation studies with power systems of different scale demonstrate the effectiveness of the proposed algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.