Abstract

For application in a microbial fuel cell (MFC), transition metal and nitrogen co-doped nanocarbon catalysts were synthesised by pyrolysis of multi-walled carbon nanotubes (MWCNTs) in the presence of iron- or cobalt chloride and nitrogen source. For the physicochemical characterisation of the catalysts, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) was used. The results obtained by rotating disk electrode (RDE) method showed an extraordinary electrocatalytic activity of these catalysts towards oxygen reduction reaction (ORR) in neutral media, which was also confirmed by the MFC results. The Co-N-CNT and Fe-N-CNT cathode catalysts exhibited maximum power density of 5.1 W m−3 and 6 W m−3, respectively. Higher ORR activity and improved electric output in the MFC could be attributed to the formation of the active nitrogen-metal centers. All findings suggest that these materials can be used as potential cathode catalysts for ORR in MFC to replace expensive noble-metal based materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call