Abstract
Abstract Object recognition is a fundamental task in applications of computer vision, which aims at detecting and locating the interested objects out of the backgrounds in images or videos, and can be originally formulated as a binary classification problem that can be effectively handled by binary SVM. Although the binary technique can be naturally extended to solve the multiple object recognition, which are known as one-vs.-one and one-vs.-all techniques, but the scalability of traditional methods tend to be poor, and limits the wide applications. Inspired by the idea presented by Multi-class Core Vector Machine, we propose a novel Multi-class SVM algorithm, which achieves excellent performance on dealing with multiple object recognition. The simulation results on synthetic numerical data and recognition results on real-world pictures demonstrate the validity of the proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal on Smart Sensing and Intelligent Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.