Abstract
Classic galactosemia (CG) is a potentially lethal inborn error of galactose metabolism that results from deleterious mutations in the human galactose-1 phosphate uridylyltransferase (GALT) gene. Previously, we constructed a GalT-/- (GalT-deficient) mouse model that exhibits galactose sensitivity in the newborn mutant pups, reduced fertility in adult females, impaired motor functions, and growth restriction in both sexes. In this study, we tested whether restoration of hepatic GALT activity alone could decrease galactose-1 phosphate (gal-1P) and plasma galactose in the mouse model. The administration of different doses of mouse GalT (mGalT) mRNA resulted in a dose-dependent increase in mGalT protein expression and enzyme activity in the liver of GalT-deficient mice. Single intravenous (i.v.) dose of human GALT (hGALT) mRNA decreased gal-1P in mutant mouse liver and red blood cells (RBCs) within 24h with low levels maintained for over a week. Repeated i.v. injections increased hepatic GalT expression, nearly normalized gal-1P levels in liver, and decreased gal-1P levels in RBCs and peripheral tissues throughout all doses. Moreover, repeated dosing reduced plasma galactose by 60% or more throughout all four doses. Additionally, a single intraperitoneal dose of hGALT mRNA overcame the galactose sensitivity and promoted the growth in a GalT-/- newborn pup.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.