Abstract

Novel monomethoxy poly(ethylene glycol) (mPEG) modified hydroxylated tung oil (HTO), denoted as mPEG-HTO-mPEG, was designed and synthesized for drug delivery. mPEG-HTO-mPEG consists of a hydroxylated tung oil center joined by two mPEG blocks via a urethane linkage. The properties of mPEG-HTO-mPEG were affected by the length of the mPEG chain. Three mPEG with different molecular weights were used to prepare mPEG-HTO-mPEG. The obtained three mPEG-HTO-mPEG polymers were characterized by nuclear magnetic resonance (NMR), Fourier transformation infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and gel permeation chromatography (GPC), respectively. Furthermore, the particle sizes of mPEG-HTO-mPEG micelles were evaluated by dynamic light scattering (DLS) and transmission electron microscope (TEM). A critical aggregation concentration (CAC) ranged from 7.28 to 11.73 mg/L depending on the chain length of mPEG. The drug loading and release behaviors of mPEG-HTO-mPEG were investigated using prednisone acetate as a model drug, and results indicated that hydrophobic prednisone acetate could be effectively loaded into mPEG-HTO-mPEG micelles and exhibited a long-term sustained release. Moreover, compared with HTO, mPEG-HTO-mPEG had no obvious cytotoxicity to HeLa and L929 cells. Therefore, monomethoxy poly(ethylene glycol) modified hydroxylated tung oil mPEG-HTO-mPEG may be a promising drug carrier.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call