Abstract

IntroductionThis work aimed to reveal the crucial role of Nell-1 in the angiogenic differentiation of human dental pulp stem cells (DPSCs) alone or co-cultured with human umbilical vein endothelial cell (HUVECs) in vitro and whether this molecule is involved in the pulp exposure model in vivo.MethodsImmunofluorescence was conducted to ascertain the location of Nell-1 on DPSCs, HUVECs, and normal rat dental tissues. RT-PCR, Western blot, and ELISA were performed to observe the expression levels of angiogenic markers and determine the angiogenic differentiation of Nell-1 on DPSCs alone or co-cultured with HUVECs, as well as in vitro tube formation assay. Blood vessel number for all groups was observed and compared using immunohistochemistry by establishing a rat pulp exposure model.ResultsNell-1 is highly expressed in the nucleus of DPSCs and HUVECs and is co-expressed with angiogenic markers in normal rat pulp tissues. Hence, Nell-1 can promote the angiogenic marker expression in DPSCs alone and co-cultured with other cells and can enhance angiogenesis in vitro as well as in the pulp exposure model.ConclusionNell-1 may play a positive role in the angiogenic differentiation of DPSCs.

Highlights

  • This work aimed to reveal the crucial role of Nel-like molecule-1 (Nell-1) in the angiogenic differentiation of human dental pulp stem cells (DPSCs) alone or co-cultured with human umbilical vein endothelial cell (HUVECs) in vitro and whether this molecule is involved in the pulp exposure model in vivo

  • Vasculogenesis is the differentiation of endothelial cells to form blood vessels during embryonic development, while angiogenesis means new vessels sprouting from pre-existing vasculature (Chung and Ferrara, 2011), both of them are mediated by angiogenic growth factors (Rombouts et al, 2017)

  • Angiogenic markers including vascular endothelial growth factor (VEGF) and Flk-1 were detected by Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

Read more

Summary

Introduction

This work aimed to reveal the crucial role of Nell-1 in the angiogenic differentiation of human dental pulp stem cells (DPSCs) alone or co-cultured with human umbilical vein endothelial cell (HUVECs) in vitro and whether this molecule is involved in the pulp exposure model in vivo. Fahmy-Garcia et al (2018) confirmed that Nell-1 can enhance the migration of mesenchymal stem cells (MSCs) and the angiogenesis of HUVECs. DPSCs form a dentin/pulp-like complex (Gronthos et al, 2000) with neurallike cells (Stevens et al, 2008; Gonmanee et al, 2018; Li D. et al, 2019), endotheliocytes (d’Aquino et al, 2007), and vascular tissues (Karbanova et al, 2011) and have a predominant proangiogenic influence compared with dental follicle precursor cells (FSCs) (Hilkens et al, 2014). The potential of Nell-1 to induce the angiogenetic differentiation of DPSCs is of great interest

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call