Abstract

Instant detection of explosive material is highly appreciated for counterterrorism activity and homeland security. Nitro group (high energy rich bond) is responsible for explosive characteristics. Nitro group includes intense competition between two highly electronegative atoms. Nitro group is frequently encountered in all explosive materials. This function group includes delocalized π bond; that could secure intense photoluminescence (fluorescence and phosphorescence) signature. In this study, the main classes of explosive materials including nitro-compounds (i.e. TNT), nitramines (i.e. RDX), and nitric esters (i.e. PETN) were stimulated with green laser source of 532 nm and 5 mW power. The photoluminescence signature of each tested material was captured via hyperspectral camera. The tested explosives demonstrated characteristic fluorescence signature at 571, 587, and 613 nm for RDX, PETN, and TNT respectively. Furthermore, TNT demonstrated characteristic phosphorescence signature at 975 nm. The customized laser induced photoluminescence technique offered facile detection of trace explosive material via clustering approach based on K-m clustering (k = 8); this technique was able to detect RDX, PETN and TNT traces on the finger nail via processed hyperspectral images at 581 nm, 797 nm and 953 nm, respectively. This study shaded the light on novel customized photoluminescence technique for facile detection and identification of trace explosive materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.