Abstract
ABSTRACT The physicochemical characteristics of polycyclic aromatic compounds critical to environmental modelling such as octanol partition coefficients, solubility, lipophilicity, polarity and several equilibrium constants are functions of their underlying molecular structures, prompting the development of mathematical models to predict such characteristics for which experimental results are difficult to obtain. We propose twelve novel descriptors derived from geometric, harmonic and Zagreb degree-based descriptors and then test the effectiveness of these descriptors on a data set consisting of 55 benzenoid hydrocarbons of environmental importance. Our computations show that the proposed descriptors have a good linear correlation and predictive power when compared to the degree and distance type descriptors. We have also derived the QSPR expressions for four properties of a large series of polycyclic aromatics arising from circumscribing coronenes and show that a scaling factor can be deduced to derive physicochemical properties of such series up to 2D graphene sheets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.