Abstract

BackgroundFood contamination with Salmonella enterica and enterohemorrhagic Escherichia coli is among the leading causes of foodborne illnesses worldwide and crop plants are associated with > 50% of the disease outbreaks. However, the mechanisms underlying the interaction of these human pathogens with plants remain elusive. In this study, we have explored plant resistance mechanisms against these enterobacteria and the plant pathogen Pseudomonas syringae pv. tomato (Pst) DC3118, as an opportunity to improve food safety.ResultsWe found that S. enterica serovar Typhimurium (STm) transcriptionally modulates stress responses in Arabidopsis leaves, including induction of two hallmark processes of plant defense: ROS burst and cell wall modifications. Analyses of plants with a mutation in the potentially STm-induced gene EXO70H4 revealed that its encoded protein is required for stomatal defense against STm and E. coli O157:H7, but not against Pst DC3118. In the apoplast however, EXO70H4 is required for defense against STm and Pst DC3118, but not against E. coli O157:H7. Moreover, EXO70H4 is required for callose deposition, but had no function in ROS burst, triggered by all three bacteria. The salicylic acid (SA) signaling and biosynthesis proteins NPR1 and ICS1, respectively, were involved in stomatal and apoplastic defense, as well as callose deposition, against human and plant pathogens.ConclusionsThe results show that EXO70H4 is involved in stomatal and apoplastic defenses in Arabidopsis and suggest that EXO70H4-mediated defense play a distinct role in guard cells and leaf mesophyll cells in a bacteria-dependent manner. Nonetheless, EXO70H4 contributes to callose deposition in response to both human and plant pathogens. NPR1 and ICS1, two proteins involved in the SA signaling pathway, are important to inhibit leaf internalization and apoplastic persistence of enterobacteria and proliferation of phytopathogens. These findings highlight the existence of unique and shared plant genetic components to fight off diverse bacterial pathogens providing specific targets for the prevention of foodborne diseases.

Highlights

  • Food contamination with Salmonella enterica and enterohemorrhagic Escherichia coli is among the leading causes of foodborne illnesses worldwide and crop plants are associated with > 50% of the disease outbreaks

  • We explored the plant transcriptional modulation mediated by serovar Typhimurium (STm) and used Arabidopsis genetic resources to again insights on the molecular mechanisms activated during plant colonization with STm and E. coli O157:H7

  • We demonstrate that EXO70H4 (EXOCYST SUBUNIT EXO70 FAMILY PROTEIN H4) participates in the stomatal defense in response to both enterobacteria, while in the leaf apoplast it is involved in the immune response only against STm and Pseudomonas syringae pv. tomato (Pst)

Read more

Summary

Introduction

Food contamination with Salmonella enterica and enterohemorrhagic Escherichia coli is among the leading causes of foodborne illnesses worldwide and crop plants are associated with > 50% of the disease outbreaks. The mechanisms underlying the interaction of these human pathogens with plants remain elusive. Foodborne diseases caused by human pathogens have profound social and economic impacts. Despite several safety measures taken to prevent disease outbreaks, it is estimated that 600 million (1 in 10) people are affected worldwide every year [1]. The most common etiologic agents identified in these foodborne disease outbreaks were norovirus (54%), Salmonella enterica (21%) and Shiga toxin-producing Escherichia coli (10%) [2]. It is imperative to understand the biological processes involved in the human bacterial pathogenplant interactions to prevent, or at least minimize, enteropathogen colonization of fresh produce

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call