Abstract

Turbidity associated with river plumes is known to affect the search ability of visual predators and thus can drive 'top-down' impacts on prey populations in complex ecosystems; however, traditional quantification of predator-prey relationships (i.e. stomach content analysis) often fails with larval fish due to rapid digestion rates. Herein, we use novel molecular genetic methods to quantify larval yellow perch (YP) in predator stomachs in western Lake Erie to test the hypothesis that turbidity drives variation in larval predation. We characterize predator stomach content DNA to first identify YP DNA (single nucleotide polymorphism) and then quantify larval YP predation (microsatellite allele counting) in two river plumes differing in turbidity. Our results showed elevated larval YP predation in the less turbid river plume, consistent with a top-down impact of turbidity on larval survival. Our analyses highlight novel ecological hypothesis testing using the power of innovative molecular genetic approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.