Abstract
Because of poor water solubility and low thermostability, the application of collagen is limited seriously in fields such as injectable biomaterials and cosmetics. In order to overcome the two drawbacks simultaneously, a novel bifunctional modifier based on the esterification of polyacrylic acid (PAA) with N-hydroxysuccinimide (NHS) was prepared. The esterification degree of PAA-NHS esters was increased upon increasing the NHS dose, which was confirmed by Fourier-transform infrared (FTIR) and nuclear magnetic resonance spectrascopy. FTIR results indicated that the triple helix of the modified collagens remained integrated, whereas the molecular weight became larger, as reflected by the sodium dodecyl sulfate–polyacrylamide gel electrophoresis pattern. The modified collagens displayed excellent water solubility under neutral condition, owing to lower isoelectric point (3.1–4.3) than that of native collagen (7.1). Meanwhile, denaturation temperatures of the modified collagens were increased by 4.8–5.9 °C after modification. The modified collagen displayed hierarchical microstructures, as reflected by field-emission scanning electron microscopy, while atomic force microscopy further revealed a “fishing net-like” network in the nanoscale, reflecting a unique aggregation behavior of collagen macromolecules after modification. As a whole, the PAA-NHS ester as a bifunctional modifier endowed collagen with desired water solubility and thermostability in a conflict-free manner, which was beneficial to the process and application of the water-soluble collagen.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.