Abstract
Abstract A novel two-dimensional shear stress-heat and moisture diffusion model is proposed for adhesive single-lap joints. Spatial and time-dependent material properties are derived from coupled partial differential equations governing moisture diffusion and heat transfer through the exposed adhesive edges. Constituting differential equations are numerically solved for the shear stress distribution in the bonded area. Several diffusion scenarios and boundary conditions are analyzed. Significant improvements are achieved in the prediction of the shear stress distribution in the adhesive layer when compared to the one-dimensional models in the literature. Scenarios of moisture diffusion generate stress gradients through the bondline, while the relatively fast internal thermal conductivity reduces temperature differentials within the joint. Moisture diffusion in the adhesive layer is significantly accelerated at high temperatures. The results of the proposed model show reasonable agreement with a three-dimensional finite element analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.