Abstract
Coordination complexes of transition metal cations (CoII, NiII, CuII and ZnII) containing coumarilate and N,N′-diethylnicotinamide were synthesized. The structural characterization and thermal behaviour analysis of novel samples synthesized were conducted through elemental analysis, magnetic susceptibility, solid-state UV–Vis, direct and injection probe mass spectra, FTIR spectra, thermoanalytic TG-DTG/DTA and single crystal X-ray diffraction methods. The structural details of single crystals of [Co(dena)2(H2O)4](coum)2 (I) and [Cu(coum)2(dena)2(H2O)2] (III) complexes were resolved completely. Moreover, the results of analysis obtained for [Ni(coum)2(dena)2(H2O)2] (II) and [Zn(dena)2(H2O)4](coum)2 (IV) complexes were interpreted considering the samples with crystal structures defined and made assumptions about the structural details. It was determined that the complex of CoII metal cation has salt-type structure and the coordination number of metal is accomplished to six as the sum of 4 mol of water and also 2 mol of N,N′-diethylnicotinamide ligands in trans position located within the coordination sphere. It was observed that 2 mol of coumarilate anions are located outside the coordination sphere and have stabilized to the charge (2+) of metal. The CuII complex has totally molecular structure, and the coordination sphere of metal cation was 6 as the sum of 2 mol of water, 2 mol of N,N′-diethylnicotinamide and 2 mol of monoanionic monodentate coumarilate ligands. All ligands have been located in –trans position. The geometry of both complex structures is distorted octahedral. It is assumed that the NiII complex structure is isostructural with CuII complex structure and also does ZnII complex with CoII structure. It was determined that the decomposition products obtained from thermal analysis are the oxides of related metal cations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.