Abstract
Recessive mutations in ALS2 (juvenile amyotrophic lateral sclerosis) are causative for early-onset upper motor neuron diseases, including infantile ascending hereditary spastic paralysis (IAHSP). The goal of this study is to identify novel disease-causing ALS2 mutations. Mutations in ALS2 were screened by direct sequencing of complementary DNA obtained from patients' lymphoblasts. We report a novel ALS2 missense mutation in patients affected by IAHSP. This homozygous G669A mutation in exon 4 is predicted to result in a tyrosine substitution at cysteine 156 of the RCC1 (regulator of chromatin condensation)-like domain, encoding a putative guanine exchange factor for Ran guanosine triphosphatase, leading to a loss of ALS2 function due to instability of mutant protein. These results highlight the important role of the RCC1-like domain in ALS2 stability and function that is essential for upper motor neuron maintenance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.