Abstract

Osteogenesis imperfecta (OI) is a heritable skeletal disorder characterized by bone fragility and low bone mass. Recently, loss-of-function mutations of WNT1 have been reported to be causative in OI or osteoporosis. We report an OI patient with novel compound heterozygous WNT1 missense mutations, p.Glu123Asp and p.Cys153Gly. Both mutations are found in the exon 3, and the p.Glu123Asp is the most proximal N-terminus missense mutation among the reported WNT1 missense mutations in OI patients. In vitro functional analysis reveals that while expression of wildtype WNT1 stimulates canonical WNT1-mediated β-catenin signaling, that of individual WNT1 mutant fails to do so, indicative of the pathogenic nature of the WNT1 variants. Although the pathogenic mechanism of WNT1 defects in OI has yet to be uncovered, these findings further contribute to the implications and importance of functional relevance of WNT1 in skeletal disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.