Abstract

Ammonium trichloro[1,2-ethanediolato-O,O′]-tellurate (AS101) is the most important synthetic Te compound from the standpoint of its biological activity. It is a potent immunomodulator with a variety of potential therapeutic applications and antitumoral action in several preclinical and clinical studies. An experimental design has been used to develop and optimize a novel microwave-assisted synthesis (MAOS) of the AS101. In comparison to the results observed in the literature, refluxing Te(IV) chloride and ethylene glycol in acetonitrile (Method A), or by refluxing Te(IV) chloride and ammonium chloride in ethylene glycol (Method B), it was found that the developed methods in the present work are an effective alternative, because although performance slightly decreases compared to conventional procedures (75% vs. 79% by Method A, and 45% vs. 51% by Method B), reaction times decreased from 4 h to 30 min and from 4 h to 10 min, by Methods A and B respectively. MAOS is proving to be of value in the rapid synthesis of compounds with new and improved biological activities, specially based on the benefit of its shorter reaction times.

Highlights

  • Tellurium (Te), discovered in 1783, is one of the least abundant elements in the earth’s lithosphere and it is one of the five elements that has never been reported in sea water

  • The investigation of therapeutic activities of Te compounds is rather limited in literature, despite the relative abundance of Te in the human body [2,3,4]

  • AS101 was previously synthesized by refluxing Te(IV) chloride and ethylene glycol in acetonitrile as shown in Scheme 1 (Method A), or by refluxing Te(IV) chloride and ammonium chloride in ethylene glycol (Method B) [44]

Read more

Summary

Introduction

Tellurium (Te), discovered in 1783, is one of the least abundant elements in the earth’s lithosphere and it is one of the five elements that has never been reported in sea water. It is the fourth most abundant trace element in the human body, and is unusually abundant in human food [1]. Similar to Se 40 years ago, it is possible that the toxic element Te will be found to be an essential element [5]. Te chemistry has made great progress in the last few years [6].

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.