Abstract

Post-transcriptional control of gene expression by microRNAs provides an important regulatory system within neurons, allowing co-ordinate and fine-tuned expression of plasticity-related proteins. Indeed, specific microRNAs have been shown to be regulated by synaptic activity in the dentate gyrus, and contribute to the regulated gene expression that underlies the persistence of long-term potentiation (LTP), a model of memory. To fully explore the contribution of microRNAs in synaptic plasticity, it is important to characterize the complete microRNA transcriptome in regions such as the dentate gyrus. Accordingly we used deep sequencing and miRDeep* analysis to search for novel microRNAs expressed in the dentate gyrus granule cell layer. Drawing on combined sequencing and bioinformatics analyses, including hairpin stability and patterns of precursor microRNA processing, we identified nine putative novel microRNAs. We did not find evidence of differential expression of any of these putative microRNAs following LTP at perforant path-granule cell synapses in awake rats (5 h post-tetanus; p > 0.05). Focusing on novel_miR-1, the most abundant novel miRNA, we showed that this sequence could be amplified from RNA extracted from dentate gyrus granule cells by reverse transcription-quantitative polymerase chain reaction. Further, by computationally predicting mRNA targets of this microRNA, we found that this novel microRNA likely contributes to the regulation of proteins that function at synapses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call