Abstract

ABSTRACT Zeolite Y-doped sulphonated polyethersulphone (SPES) membrane is investigated for acetic acid dehydration by pervaporation. The membrane exhibits desired functional group, semicrystalline nature and high thermal stability with a uniform dispersion of filler. A 15 wt% zeolite Y loading was found to be the most appropriate with a low degree of swelling (30%) and mechanical stability (37 MPa). Molecular dynamic simulation estimates the water and acetic acid which reveals higher diffusivity of water molecules than acetic acid. The RDF analysis shows the high interaction of water molecules towards the zeolite Y and sulphonic group. The simulated diffusivity of acetic acid and water was validated with experimental diffusivity and it was to be in good agreement with an error below ±5%. The effect of different feed water concentrations (3–70 wt %), permeate pressures (1–11 mm Hg) and membrane thicknesses (30–180 μm) was investigated. The synthesised membrane exhibits high selectivity (1261) and optimum flux at a 97:3 ratio of acetic acid:water. The interaction of zeolite Y with SPES induces the hydrophilic nature in the membrane which preferentially improves the diffusion and permeation of water and restricts the acetic acid which causes the optimum water flux with high selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call