Abstract

This talk will outline novel microfluidic strategies for biomembrane engineering that are capable of fabricating vesicles [1], droplet interface bilayer networks [2], multisomes [3] and artificial tissues [4] where parameters such as membrane asymmetry, membrane curvature, compartment connectivity and individual compartment contents can be controlled. Various bulk methods, such as extrusion, gentle hydration and electroformation, have been synonymous with the formation of lipid vesicles over recent years. However these strategies suffer from significant shortcomings associated with these processes including limited control of vesicle structural parameters such as size, lamellarity, membrane composition and internal contents. To address this technological bottleneck we have developed novel microfluidic platforms to form lipid vesicles in high-throughput with full control over the composition of both the inner and outer leaflet of the membrane thereby enabling the manufacture of symmetric and asymmetric vesicles. This is achieved by manufacturing microfluidic channels with a step junction, produced by double-layer photolithography, which facilitates the transfer of a W/O emulsion across an oil-water phase boundary and the self-assembly of a phospholipid bilayer. These platforms are being used to explore the role of asymmetry in biological systems [1] and study the engineering rules that regulate membrane mediated protein-protein interactions [5]. In addition, these technologies are enabling the construction of biological machines capable of acting as micro-reactors [6], environmental sensors and smart delivery vehicles [5] as well as complex multi-compartment artificial cells where the contents and connectivity of each compartment can be controlled. These compartments are separated by biological functional membranes that can facilitate transport between the compartments themselves and between the compartments and external environment. This approach has led to the development of multi-step enzymatic signalling cascades integrated into artificial cells leading to in-situ chemical synthesis [7]. The ability to compartmentalise synthetic cells is opening up the possibility of increasing our understanding of how this phenomena controls signal transduction and biological function in real cells by allowing us to manufacture protocells that more accurately capture the spatio-temporal structures of real cells. Finally we will present the development of droplet based artificial tissues that can be used to generate display materials based on biological components [4].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call