Abstract

AbstractThis work concerns the fabrication, modeling and characterization of a novel microfluidic flow sensor based on a microchannel capped with a porous silicon membrane, on top of which the sensor active elements are integrated. The microchannel is formed through a two‐step anodization process. In the first step a mesoporous silicon layer is formed on a lithographically defined area, while in the second step a channel is formed underneath the porous layer by electropolishing. The channel is buried into bulk silicon and capped with a free‐standing porous silicon layer, which is co‐planar with the Si substrate. The overall developed process for the formation of the device will be described and simulation and device characterization results will be presented. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.