Abstract

Over the past ten years, interest in epigenetic has rapidly increased. Heritable and stable changes in gene expression without any change in DNA sequence is in the field of epigenetics. Plants have a well-preserved epigenetic signature called DNA methylation. It is an essential epigenetic mark that protects genomic stability, silences harmful transposon insertions, and controls global gene expression in all developmental stages and environmental circumstances. All three sequence contexts, the asymmetric CpHpH context and the symmetric CpG and CpHpG contexts (where H is C, A, or T), are among DNA methylation sites in plants. Particularly, DNA cytosine methylation affects a wide range of biological processes, such as gene expression, chromatin structure, DNA packing, recombination, genomic imprinting, and DNA replication. The choice of primer pairs that flank cytosine methylation contexts is critical when designing for the detection of DNA cytosine methylation using bisulfite sequencing. We have developed and synthesized 26 bisulfite specific primer pairs suitable for DNA cytosine methylation investigations in peppers. These primers are specific to certain promoters, intergenic regions, and gene bodies (exons, introns, and UTRs). DNA samples taken from various tissues and developmental stages of Capsicum annuum L. Demre Sivrisi were analyzed by these primer pairs to confirm their utilization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call