Abstract
The effects of the topography, adhesiveness and chemistry of surfaces in modulating the behaviour of cells in vivo and in vitro have been extensively researched. However, few natural systems are simple enough to allow straightforward conclusions to be drawn, as many different cues are likely to be present at one time. Microelectronic fabrication, normally employed in making integrated circuits, can produce substrates patterned on scales highly relevant to studies of cell behaviour. In this paper, we describe progress in fabricating simple artificial substrata both at the micrometre and sub-micrometre scales. The former can be considered as models for contact guidance along other cells or axonal processes: the latter, models for guidance along aligned collagen matrices. We have systematically studied the reactions of different cell types to simple cues (steps and grooves). Additionally, it may be possible to produce fine-resolution patterns with differential adhesiveness, or with other cell-specific surface-chemical properties, such as the differential deposition of proteins, e.g. cell adhesion molecules. We also describe early results in using topographic and other cues to guide cells onto patterned metal electrodes, forming simple electrically active networks of controlled design, from which long-term recordings can conveniently be made.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.