Abstract

Many of the current synthesis methods for aluminum hydride (alane—AlH3) involve reacting AlCl3 and LiAlH4 in solvents. The reaction requires the formation of an alane adduct such as AlH3⋅[(C2H5)2O] prior to obtaining crystallized stable α-AlH3. This process requires several hours of pumping in a vacuum system to remove the ether and convert the alane etherate into stable α-alane. This crystallization process is both costly and hazardous because a large amount of highly flammable material (e.g. ether) is removed by vacuum pumps over several hours. Conversely, the work presented herein describes novel methods to synthesize adduct-free alane. It is demonstrated here that AlH3 can form by mixing AlCl3 and LiAlH4 in the solid state and heating to 75∘C; only α-AlH3 was obtained. The α-AlH3 product can be washed with minimal solvents leading to zero formation of alane adducts. In addition, the unwanted LiCl by-product is also removed during the solvent wash, resulting in halide-free α-alane. Although simply mixing and heating the reactants led to a 40% yield of alane, having the reactants compacted and mechanically pressed while heating increases the yield to 60% crystalline α-AlH3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.