Abstract

3D point cloud based object recognition becomes increasingly important in the last few years, as the widely use of point cloud over the low-cost 3D sensors have developed rapidly. However, the obtained 3D point cloud is inevitably contaminated with noise due to physical and environmental factors, which has a negative impact on recognition task. To address this problem, a complete object recognition framework for 3D noisy point cloud is presented into which a pre-processing step of filtering is integrated for the first time. In the filtering phase, our two proposed approaches, named Guided 3D Point Cloud Filter (G3DF) and Iterative Guidance Normal Filter (IGNF), are taken into account to produce high-quality point cloud model. Then, on the basis of advantages of local-based and global-based descriptors, a new type of feature descriptor, called Local-to-Global Histogram (LGH), is proposed, which contains Local Viewpoint Feature Histogram (LVFH) and Local Ensemble of Shape Function (LESF). Experimental results show that the comprehensive classification performance yielded by using proposed filters and descriptors is competitive compared to other state-of-the-art combinations. In particularly, the composition of G3DF and LVFH is more suited for real-time applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.