Abstract

We present a novel method of generating and retrieving droplets stored in microfluidic grooves or cavity structures. First we designed and fabricated polydimethylsiloxane microchannels with grooves on the walls and then produced a two-phase flow of oil and aqueous phases to form aqueous phase droplets in an oil state. We propose the following three mechanisms of droplet generation: the contact line on the groove wall continues moving along the wall and descends to the bottom of the cavity, confining the aqueous phase in the cavity; once the interface between the oil and aqueous phases moves into the cavity, the interface contacts the top of the neighboring groove; and a spherical droplet forms at the corner in the cavity due to surface tension. The viscosity of the oil phase and the surface tension of the interface determine whether a droplet can be generated. Then, we could adjust the velocity of the interface and the aspect ratio of the cavity to achieve the optimal conditions for generating the single droplet. We observed that the largest droplet is stably generated without a daughter droplet at typical values of free-stream velocity (10 μl∕min) and groove pitch 110 μm for all three cases with different oil phases (20, 50, and 84 cP). This technique is expected to serve as a platform for droplet-based reaction systems, particularly with regard to monitoring cell behavior, in vitro expression, and possibly even micropolymerase chain reaction chambers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.