Abstract

It has been proven that error compensation is a key technique to improve machining accuracy. However, existing iteration and recursive compensation algorithm is difficult to realize. Hence, a simple and rapid compensation method is considerably necessary for engineering application. In this paper, a novel compensation strategy just by algebraic operation was first proposed for machining accuracy improvement. Error motion transformation was introduced to build the position-independent geometric error (PIGE) model according to homogeneous transformation matrix (HTM). Then, the analytical numerical control (NC) code expression with error compensation was derived and used for NC code generation. In addition, the presented method is appropriate for post-processing of non-orthogonal machine tool. At last, simulation and cutting experiment were demonstrated to verify the feasibility and effectiveness of the proposed method. Taking hemisphere surface as the test object, the simulation results showed that the effects of PIGEs could be eliminated by the proposed method. The experiment results with compensation indicated that the machining accuracy improved to about 14 % compared with those without compensation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call