Abstract

This paper presents a novel algorithm for handling occlusion in visual traffic surveillance (VTS) by geometrically splitting the model that has been fitted onto the composite binary vehicle mask of two occluded vehicles. The proposed algorithm consists of a critical points detection step, a critical points clustering step and a model partition step using the vanishing point of the road. The critical points detection step detects the major critical points on the contour of the binary vehicle mask. The critical points clustering step selects the best critical points among the detected critical points as the reference points for the model partition. The model partition step partitions the model by exploiting the information of the vanishing point of the road and the selected critical points. The proposed algorithm was tested on a number of real traffic image sequences, and has demonstrated that it can successfully partition the model that has been fitted onto two occluded vehicles. To evaluate the accuracy, the dimensions of each individual vehicle are estimated based on the partitioned model. The estimation accuracies in vehicle width, length and height are 95.5%, 93.4% and 97.7% respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.