Abstract

Partial substitution of Al atoms with Sc in wurtzite AlN crystals increases the piezoelectric constants. This leads to an increased electromechanical coupling, which is required for high bandwidths in piezo-acoustic filters. The crystal bonds in Ah-xScxN (AlScN) are softened as function of Sc atomic percentage x, leading to reduction of phase velocity in the film. Combining high Sc content AlScN films with high velocity substrates favors higher order guided surface acoustic wave (SAW) modes [1]. This study investigates higher order SAW modes in epitaxial AlScN on sapphire (Al2O3). Their dispersion for Pt metallized epitaxial AlScN films on Al2O3was computed for two different propagation directions. Computed phase velocity dispersion branches were experimentally verified by the characterization of fabricated SAW resonators. The results indicated four wave modes for the propagation direction (0°, 0°, 0°), featuring 3D polarized displacement fields. The sensitivity of the wave modes to the elastic constants of AlScN was investigated. It was shown that due to the 3D polarization of the waves, all elastic constants have an influence on the phase velocity and can be measured by suitable weighting functions in material constant extraction procedures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.