Abstract

Tritium accumulation in fusion reactor materials is considered a serious radiological issue, therefore a lot of effort has been concentrated on the development of radiometric techniques. A novel method, based on gradual dissolution, for the determination of the total tritium content and its depth profiles in metallic samples is demonstrated. This method allows for the measurement of tritium in metallic samples after their exposure to a hydrogen and tritium mixture, tritium containing plasma or after irradiation with neutrons resulting in tritium formation. In this method, successive layers of metal are removed using an appropriate etching agent in the controlled regime and the amount of evolved gases are measured by means of chromatography (gas composition and release rate) and a proportional gas flow detector (tritium). Results for the tritium profiles in neutron irradiated, plasma exposed and gas loaded beryllium are reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.