Abstract

A new high-temperature method for the deposition of gas-tight silicon carbide protective coatings with low gas permeability has been developed. The free carbon atoms form during the high-temperature pyrolysis of hydrocarbon molecules. In turn, carbon reacts with molten silicon contained in the subsurface substrate layers and/or with silicon vapor. The source of silicon vapor serves the molten silicon in the heated zone of a reactor furnace. Such coatings effectively protect SiC-C-Si and SiC-C-MoSi2 ceramics, carbon–carbon composite materials, structural graphite, and refractory metals and alloys from oxidation. The conducted tests show the high thermal oxidation and thermal shock stability of deposited protective coatings, as well as their good adhesion to the substrates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call