Abstract
Determining the influence of effective stress on rock deformation is essential for geotechnical stability analysis in oil and gas production. There is no universal effective stress coefficient for all rock properties, and different values of effective stress coefficient apply for different physical quantities (Gurevich, 2004). Although the effective stress law and its application is not new, frequently overlooked or misapplied. Hence, a novel method was proposed for measuring and calculating the effective stress coefficient in this work. Firstly, pore compressibility under different confine pressure values was measured using reservoir fluid or experimental fluid. Secondly, effective stress was calculated by comparing pore compressibility under different confine pressure and then, the range of effective stress coefficients was determined eventually. Finally, the reliability of the proposed method was validated via the stress-sensitive curves of tight sandstone core samples and by comparing the results with those of two other calculation methods for the effective stress coefficient. This work suggests that the stress-sensitive curves of the two core samples from the same location and with similar physical properties have given similar effective stress coefficient (η = 0.201) calculated using the proposed method, which indicates that the calculation is reasonable. The comparison of the proposed method with other methods also indicate that the proposed technique is reliable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.