Abstract
Elemental identification of individual microsized aerosol particles is an important topic in air pollution studies. However, simultaneous and quantitative analysis of multiple constituents in a single aerosol particle with the noncontact in situ manner is still a challenging task. In this work, we explore the laser trapping-LIBS-machine learning to analyze four elements (Zn, Ni, Cu, and Cr) absorbed in a single micro-carbon black particle in air. By employing a hollow laser beam for trapping, the particle can be restricted in a range as small as ∼1.72 μm, which is much smaller than the focal diameter of the flat-topped LIBS exciting laser (∼20 μm). Therefore, the particle can be entirely and homogeneously radiated, and the LIBS spectrum with a high signal-to-noise ratio (SNR) is correspondingly achieved. Then, two types of calibration models, i.e., the univariate method (calibration curve) and the multivariate calibration method (random forests (RF) regression), are employed for data processing. The results indicate that the RF calibration model shows a better prediction performance. The mean relative error (MRE), relative standard deviation (RSD), and root-mean-squared error (RMSE) are reduced from 0.1854, 363.7, and 434.7 to 0.0866, 179.8, and 216.2 ppm, respectively. Finally, simultaneous and quantitative determination of the four metal contents with high accuracy is realized based on the RF model. The method proposed in this work has the potential for online single aerosol particle analysis and further provides a theoretical basis and technical support for the precise prevention and control of composite air pollution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.