Abstract

The present study aimed to purify and identify the metabolites from T. atroviride using high-performance liquid chromatography (HPLC) and 1H and 13C nuclear magnetic resonance spectrometer (NMR) followed by analyzing their toxicological, antibacterial and anticancer properties. This work identified two metabolites - TM1 and TM2. TM1 was in two forms: (i) 1, 3-dione-5, 5-dimethylcyclohexane; and, (ii) 2-enone-3hydroxy −5,5-dimethylcylohex, while TM2 was 4H-1,3-dioxin-4-one-2,3,6-trimethyl. These metabolites did not exhibit any irritant or allergic reaction as revealed by HET- CAM test. TM2 significantly inhibited the growth of H. pylori and Shigella toxin producing Escherichia coli (STEC) as evident by in vitro and microscopic observations of bacterial cell death. TM2 also induced the cell death and cytotoxicity, as revealed by cell viability test and western blot analysis. According to microscopic, flow cytometer and western blot analysis, TM2 treated cells displayed higher ROS, cell death, and apoptosis-related protein expression than TM1 and control. This study concluded that TM2 derived from T. atroviride was a potential therapeutic agent for anti-prostate cancer and antibiotic agent against MDR- H. pylori and STEC and it is also recommended to carry out further in vivo animal model experiments with improved stability of the metabolites for future pharmaceutical trails.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call