Abstract
Memory references in digital signal processors (DSP) are expensive due to their long latencies and high power consumption. Implementing fast Fourier transform (FFT) algorithms on DSP involves many memory references to access butterfly inputs and twiddle factors. Conventional FFT implementations require redundant memory references to load identical twiddle factors for butterflies from different stages in the FFT diagrams. In this paper, we present novel memory reference reduction methods to minimize memory references due to twiddle factors for implementing various different FFT algorithms on DSP. The proposed methods first group the butterflies with identical twiddle factors from different stages in the FFT diagrams and compute them before computing other butterflies with different twiddle factors, and then reduce the number of twiddle factor lookups by taking advantage of the properties of twiddle factors. Consequently, each twiddle factor is loaded only once and the number of memory references due to twiddle factors can be minimized. We have applied the proposed methods to implement radix-2 DIF FFT algorithm on TI TMS320C64x DSP. Experimental results show the proposed methods can achieve average of 76.4% reduction in the number of memory references, 53.5% saving of memory spaces due to twiddle factors, and average of 36.5% reduction in the number of clock cycles to compute radix-2 DIF FFT on DSP comparing to the conventional implementation. Similar performance gain is reported for implementing radix-2 DIT FFT algorithms using the new methods
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.