Abstract

The design of new polymeric biomaterials together with new strategies to modify membrane surface are crucial to optimise cell–biomaterial interactions in vivo and in vitro biohybrid systems. In this study we report on the novel semipermeable membranes synthesised from a polymeric blend of modified polyetheretherketone and polyurethane able to support the long-term maintenance and differentiation of human liver cells and on the surface modification of polyethersulfone membranes by plasma polymerisation of acrylic acid monomers and by immobilization of arginine-glycine-aspartic acid (RGD) peptide through a hydrophilic “spacer arm” molecule. The performance of the modified and unmodified membranes was tested by evaluation of the liver function expression of primary human hepatocytes in terms of albumin production, protein secretion and drug biotransformation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.